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Polar and quadrupolar order in smectic liquid crystals
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TU Bergakademie Freiberg, Institut fuÈ r Physikalische Chemie, Leipziger Stra û e 29,
09599 Freiberg, Germany

(Received 2 June 1997; in ® nal form 18 October 1997; accepted 25 November 1997 )

In several smectic phases the long molecules are tilted towards the layer planes. The molecules
in the layers of smectic C phases have a preferred tilt direction with a C2 rotation axis
perpendicular to the tilt plane. If the molecules have a brick-like shape, a con® guration
possessing the D2h symmetry is also possible. For molecules shaped like chevrons or bananas,
the existence of a smectic phase with the symmetry Cv was recently reported. We consider
di� erent in-plane con® gurations of smectics using a geometrical approach based on the s̀caled
particle theory’. Varying the geometrical parameters of hard rod particles, a phase diagram
for several smectic con® gurations is predicted. Depending on the particle shape, phases with
dipolar order (C2 , Cv ) and quadrupolar order (D2h ) can be stable.

1. Introduction axis, which is located in the tilt plane of the molecules.
Ferroelectric switching was observed by applying anIn the smectic C phase (SmC) long molecules are
electric ® eld parallel to the layers [1].tilted towards the smectic layers ( ® gure 1 ). The symmetry

Vectors c de® ned as parallel to the projections of theof a single layer or an in® nite stack of these layers
molecules onto the smectic layer plane would have ais characterized by a C2 rotation axis. Recently, the
preferred direction forming a dipolar order in the phasediscovery of a non-chiral ferroelectric smectic phase
SmC and SmP. Another order can be achieved by theconsisting of chevron shaped molecules was reported
alignment of molecules possessing a brick-like shape.[1]. In a paper by Cladis and Brand [2] this ferro-
The aligned bricks form a phase with D2h symmetryelectric phase was earlier suggested to exist and called
( ® gure 1 ). This phase has been called smectic M ([2, 3]smectic P (SmP). The vector of the spontaneous electric
and references therein). In ® gure 1 the smectic C, P andpolarization is directed parallel to the two fold rotation
M phases are depicted. While the smectic C and P
phases are characterized by a dipolar alignment of
the particle projections c, the orientational order of the
bricks in the smectic M shape is quadrupolar. The
smectic M phase could also be formed by tilted or
chevron shaped molecules, if the tilt directions c and Õ c

occur with equal probability.
The ordering in smectic layers is expected to be

strongly in¯ uenced by molecular shape and the tilt angle.
In this paper we compare the stabilities of the smectic
in-plane con® gurations C, P and M using a geometrical
approach. For an ensemble of rod-like particles attached
to a plane, the free energy is expressed in terms of the

Figure 1. Molecular ordering in the phases C, P and M
density and a distribution function for characterizing(after ref. [2]). The symmetries of these phases are C2 , Cv
the azimuthal particle orientation. Minimizing the freeand D2h , respectively.
energy, the stable azimuthal con® guration is evaluated,
while the tilt angle is assumed to be ® xed. We investigate*Author for correspondence.
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620 P. Schiller and H. Schlacken

how the azimuthal distribution depends on the tilt and
the particle shape.

Statistical theories for three-dimensional liquid crystals
favour the assumption that the molecular repulsion
interaction is su� cient to explain the parallel alignment
of the long molecules [4 ± 6]. If the density exceeds a
critical value, which depends on the length-to-breadth
ratio of rod-like particles, the nematic phase de® ned by
a parallel alignment of the molecular long axes is formed.
The critical density of the isotropic± nematic phase
transition diminishes with increasing length-to-breadth
ratio.

In two-dimensional systems, a similar transition is
predicted to occur if long particles are lying ¯ at on an
isotropic interface [7± 9]. Needles oriented randomly at
low surface densities form a two-dimensional nematic
phase when the density becomes su� ciently high
[8]. The particle alignment in the two-dimensional

Figure 2. The geometry of the hard rod particles is de® ned
nematic ¯ uid is similar to the order of the bricks in the by a, b, l and L = l sin h (h= tilt angle, w =azimuthal
smectic M phase. If long particles are not horizontally angle).
aligned, but tilted away from the interface, an additional
orientational ordering is possible. In the nematic state
the con® gurations c and Õ c have equal probability

particle is related to the probability w (l) that this hole(quadrupolar order), whereas this balance is disturbed
is observed due to spontaneous ¯ uctuations. In the limitin the smectic C state. The third phase, the disordered
l � 1, the work W (l) is connected with the probabilitystate (D), does not have any dipolar or quadrupolar
w that the test particle (added to the ¯ uid at an arbitrarilyorder. In this state the vector c is distributed randomly
chosen point) does not overlap with any other particlesin all surface directions so that an isotropic two-
of the system. The contribution W (l=1 ) , which isdimensional ¯ uid results. Because the evaluation of the
obtained from the probability w (l=1 ) , enters intoorientational distribution function turns out to be rather
the chemical potential. The recipe for an approximatetedious, we also consider a simpli® ed model with only
evaluation of w (l=1 ) is used in the Appendix.four allowed orientations of the vector c. The simpli® ed

model provides some qualitative results which are also
2. Simpli ® ed model with four allowed directions ofvalid for the model with continuous particle distribution.

tilted particlesFigure 2 demonstrates the geometry of hard particles
Some general features of a two-dimensional system ofconsidered in this paper. The molecule is characterized

long tilted rods can be explained by considering aby three parameters a, b and L = l sin h, where h de® nes
simpli® ed model with a reduced number of possiblethe molecular tilt with respect to the normal of the
particle orientations. Thus we assume that four azi-smectic layers. The model is also applicable to brick-
muthal angles wm=mp/2 (m =1± 4 ) for the tilt directionshaped and chevron-shaped particles. Supposing an
are allowed. It is useful to introduce the dimensionlessensemble of tilted particles attached to a plane, we
density y =Nab /A , where N denotes the number ofinvestigate the stability of dipolar and quadrupolar order
particles and A is the area of the two-dimensional system.as a function of the geometrical parameters and the
Assuming that Nm particles are directed towards thesurface density. The excluded area e� ect is investigated
direction m , the orientational distribution {x} is de® nedby using a mean ® eld approximation in combination
by the fractions xm=Nm /N (m =1± 4 ). Obviously, thewith the s̀caled particle theory’ (see the Appendix),
normalization condition x1+x2+x3+x4=1 is satis® ed.which is known to provide a proper description of
For a ® xed distribution {x} the free energy of thesystems of hard particles even if the surface density is
two-dimensional system is obtained (Appendix) as:rather large. The s̀caled particle theory’ originally

developed for hard sphere ¯ uids [10] is also applicable F (T , {x}, y)

NkT
= �

4

i=1
x i ln x i + ln y Õ ln ( 1 Õ y)to a ¯ uid of hard cylindrical particles [4,5]. The idea of

the theory is to insert a test particle dilated by a factor
l and with a ® xed orientation into a particle system. +

y

1 Õ y
E ( {x} ) + constant (1 )

The work W (l) required to create a hole for the test
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621Polar and quadrupolar order in Sm L C

where becomes stable. In the case yn<yc the phase sequence
D � N � SmC is predicted with increasing surface
density. The two-dimensional nematic occurs for anE ( {x} ) =1 +2

L

b
(x1 x3+x2x4 )

intermediate density region. If the density is su� ciently
high, the particles are uniformly aligned (SmC order).

+ A Õ 2+
a

b
+

b

a
+

L

a
+

L

b B In the special case h=0, however, the nematic order
cannot transform into the SmC con® guration, since the

Ö (x1 x2+x2 x3+x3x4+x4 x1 ) . non-tilted particles have a brick-like structure ( ® gure 2).
In the opposite case, if yn>yc , the nematic state is

T and k are the absolute temperature and the Boltzmann
omitted and either the con® guration D or SmC is stableconstant, respectively. The ® rst and second term on the
depending on the surface density.right hand side of equation (1) correspond to the con-

Figure 3 shows how the order parameters g and j® guration free energy for an ideal gas mixture consisting
depend on the density y for three di� erent particleof four components. The remaining terms account for
geometries A, B and C, which are given in the ® gurethe hard-rod interaction which reduces the area available
caption. The upper diagram refers to the case yn<yc .for a particle. Polar and two-dimensional nematic
This condition is satis® ed for the parameter sets A and(quadrupolar) order is described by introducing the order
B, whereas the lower diagram (parameters C) is allocatedparameters g =x1 Õ x3 and j= (x1 Õ x2 )+ (x3 Õ x4 ),
to the case yn>yc .respectively. Then the fractions xm=Nm /N are expressed

In ® gure 4 the ratio L /a is plotted versus the ratio b/a.as
The upper diagram refers to the model with discrete
orientational distribution. Three regions, denoted by I,
II and III, are separated by straight lines. For the regions

x1=
1 +j+2g

4
, x3=

1 +j Õ 2g

4
and

x2=x4=
1

4
( 1 Õ j) .

(2 ) I and II the condition yn<yc holds so that the phase

The relations (2) are inserted in the equation for the
free energy (1) so that the resulting expression becomes
a function of g and j. A stable orientational distribution
is accompanied with a minimum of the free energy.
Thus we have to satisfy the necessary conditions for a
minimum

qF

qg
=0 and

qF

qj
=0

which can be explicitly written as

lnC (1 +j+2g) ( 1 +j Õ 2g)

( 1 Õ j)
2 D=

4y ( 1 Õ yn )

yn ( 1 Õ y)
j and

lnC 1 +j+2g

1 +j Õ 2g D=
4y ( 1 Õ yc)

yc ( 1 Õ y)
g

(3 )

where

yn=
2ab

a
2+b

2+L b
and yc=

2b

2b +L
. (4 )

The equations (3) for the order parameters g and
j have three di� erent solutions. The ® rst solution,
g=j=0, corresponds to the disordered state (D),

Figure 3. The order parameters j and g for the model withwhich is stable for the density range 0<y < yu where
four possible azimuthal orientations are plotted versus

yu=min(yc , yn ) . the surface density y . Upper diagram: (A) L /a =0 2́5 and
If y >yu either the smectic C state with g Þ 0 and b/a =0 2́5 or (B) L /a =2 and b/a =2. Lower diagram:

(C) L /a =2 and b/a =0 2́5.j Þ 0 or the nematic state (N) with g=0 and j Þ 0
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622 P. Schiller and H. Schlacken

sequence D � N � SmC is predicted. In region III only will be isotropic (disordered state D) accompanied
with the orientational distribution g (w) =1/(2/p). Atthe con® gurations D and SmC occur (yn>yc ) .
higher densities an ordered state is expected to bifurcate
from the isotropic state. In this paper we evaluate only3. Hard-rod model with continuous orientational

distribution the bifurcation point, which can be obtained from
the linearized equation (8). Since the integral kernelIf the discrete orientational distribution is replaced by

a continuous one, the theory is slightly modi® ed. The K (w Õ w ¾ ) is a periodic function with period 2p, the
integralazimuthal angle w which is enclosed by a ® xed axis and

the projection c of a particle can vary in the interval
0 < w <2p and the number of particles tilted towards a K0=

1

2p P
2 p

0
dw ¾ K (w Õ w ¾ )

de® nite direction is

does not depend on w. Inserting the perturbation ansatzdN =Ng (w) dw

where g (w) denotes the orientational distribution satisfying
g (w) =

1

2p
+g1 (w) (9 )

the normalization condition

[max|g1 (w) |%1/(2p)] into equation (8) and linearizingP
2 p

0
dw g (w) =1. (5 ) the result, we obtain

Order parameters for the polar and the quadrupolar
CÃ C 1

2p
+g1 (w)D=1 Õ

2y

1 Õ y P
2 p

0
dw ¾

order are de® ned by

Ö [K (w Õ w ¾ ) Õ K0]g1 (w ¾ )
g = P

2 p

0
dw g (w) cos (w) and j= P

2 p

0
dw g (w) cos( 2w) .

with

(6)
CÃ =C exp A 2y

1 Õ y
K0B .

As previously, we can again consider three di� erent
con® gurations D (g =0, j=0), N (g=0, j Þ 0) and SmC

Taking into account expressions (5) and (9) leads to(g Þ 0, j Þ 0). Similarly to the discrete model, the free
CÃ =2p and thus the linear integral equationenergy is obtained from the s̀caled particle theory’

applying a similar procedure to that described in the
g1 (w) =Õ

y

1 Õ y

1

p P
2 p

0
dw ¾ [K (w Õ w ¾ ) Õ K0]g1 (w ¾ )Appendix. We arrive at the free energy:

(10)FÃ

NkT
= ln y Õ ln ( 1 Õ y)+ P

2 p

0
dw g (w) ln g (w)

results. This equation can be solved by expanding the
integral kernel to a Fourier series

+
y

1 Õ y P
2 p

0
dw P

2 p

0
dw ¾ g (w)g (w ¾ )K (w Õ w ¾ ) (7 )

K (w Õ w ¾ ) Õ K0=Õ
1

p
�
2

m=1
Km cos (w Õ w ¾ ) .

with

The ® rst coe� cients of the series are:
K (c) =|cos c|+

a
2+b

2

2ab
|sin c|+

L

2b A 1 Õ cos c+
b

a
|sin c|B

where the notation c=w Õ w ¾ is used. The terms in
K1=

L p

2b
, K2=

2 (b Õ a)
2+L b

3ab
,

K3=0 and K4=
2 (a +b)

2+L b

15ab
.

equation (7 ) have the same meaning as in equation (1).
A stable orientational distribution requires that FÃ is a
minimum. This condition leads to the integral equation

Inserting the ansatz g1 (w) = S2n=1 An cos (nw) into
equation (10) leads to the linear equationsCg (w) =expC Õ

2y

1 Õ y P
2 p

0
dw ¾ K (w Õ w ¾ )g (w ¾ )D (8 )

Ap Õ
y

1 Õ y
KnB An=0 ( for n =1, 2, 3, ¼ )for the unknown function g (w) . The normalization

constant C is obtained from condition (5). Equation (8)
is solvable for small order parameters g and j by using and thus the set of bifurcation points yn=p/(p +Kn )

results. Finally, the physically relevant bifurcation pointa perturbation method. For densities lower than a critical
value the two-dimensional system under consideration is obtained from the condition yu=min{y1 , y2 , y3 , ¼ }.
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623Polar and quadrupolar order in Sm L C

Similarly to the model with discrete orientational emanates from the isotropic state (regions I and II). The
distribution, we construct a phase diagram plotting L /a order parameters g and j could be explicitly evaluated
versus b/a ( ® gure 4). For small values of L /a and if b #a, by taking into account non-linear terms in the pertur-
the bifurcation point y4 is the lowest one and thus an bation approach for solving equation (8). Similarly
orientationally ordered phase with a four-fold rotation to the model with discrete orientational distribution,
axis is predicted to be stable for densities slightly above the nematic state becomes unstable above a second
y4 . But this state is an artefact due to the rectangular threshold. Above the second threshold the smectic C-like
corners of the hard rods, and it would disappear if order is predicted to occur if L Þ 0.
the prismatic particles were replaced by particles with
rounded contours. Therefore we only compare the 4. Discussion

stabilities of the nematic and the smectic C orders. In There are many possible ways to arrange long
the lower diagram of ® gure 4 the three regions I, II and molecules in two-dimensional ¯ uid and smectic layers
III have the same properties as found for the correspond- of liquid crystals. Using the s̀caled particle theory’ we
ing regions (upper diagram) of the model with discrete have investigated the stability of three con® gurations
orientational distribution. If y1<y2 the smectic C order for tilted hard rods with di� erent azimuthal order. The
accompanied with the orientational distribution stability of a con® guration depends on the density, the

tilt angle and the shape of the rods. In the smectic C
g (w) =

1

2p
+

1

p
g cos (w) + ¼ phase only one preferred tilt direction occurs. Introducing

a director c, which is parallel to the particle projection
is stable for y >y1 . This condition is satis® ed in region onto the supporting plane, this order can be considered
III. In the other case, if y1>y2 , the nematic state as dipolar in-plane ordering. It also seems to be possible,

however, that a quadrupolar alignment with equal
g (w) =

1

2p
+

1

p
j cos( 2w)+ ¼ probabilities for the director con® gurations c and Õ c

could occur in suitably designed materials. This order
appears in a system of long needles lying ¯ at on a
surface, if the density is high enough [9]. Brick-like
shaped molecules should align also in such a way. We
denote this con® guration, which can occur on surfaces
or in smectic layers, as two-dimensional nematic order.

The nematic order (j Þ 0, g =0) could exist if the cross
section of the tilted particles is appropriately elongated.
Then the packing entropy, which favours the SmC phase,
is compensated by the larger orientational entropy of
the nematic con® guration. If the density is su� ciently
high, however, the nematic con® guration must disappear
( ® gure 3 ), since a dense packing of tilted rods always
requires a uniform tilt direction.

Let us apply the geometrical predictions of the hard
rod model to the smectic C phase ( ® gure 1). In the
conventional smectic C phase, the long molecules rotate
rapidly around their long axes [11]. Thus the time-
averaged shape of the cross section of a particle should
be cylindrical. After tilting a cylinder with diameter a,
the cross section becomes an ellipse with the principal
axes a and b =a/cos h, where h is the tilt angle.
Considering analogously a hard rod with quadratic cross
section a Ö a, the tilt produces an elongation parallel to
the tilt direction so that a Ö a/cos h is the new crossFigure 4. For the phase region III the SmC con® guration

is the only ordered state, while for the regions I and II section. If the tilt angle h is su� ciently high, nematic
the two-dimensional nematic con® guration is stable for order should occur for an intermediate density region.
moderate densities. The upper diagram refers to the model According to the lower diagram in ® gure 3, nematic
with four possible particle orientations and the lower one

order is achieved if b/a =1/cos h>2. In this case h# 60 ßto the model with a continuous orientational distribution.
is the minimum tilt angle required for observing theThe points A, B and C correspond to the set of geometrical

parameters L /a and b/a given in the caption of ® gure 3. nematic con® guration. Unfortunately, such a large tilt has
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624 P. Schiller and H. Schlacken

never been observed in smectic phases. If the molecules in further evaluations. Using the thermodynamic relation
have a chevron-like shape (as shown in ® gure 2),
however, molecular rotation around the long axis could F (r, T , {x}) =Nr Õ

1 P r

0
dr ¾ C �

p

m=1
xmmm (T , {x}, r ¾ )Dbe prevented. In this case, suitably shaped elongated

particles can form a nematic in-plane ordering if the which connects the free energy F and the chemical
ratio b/a is su� ciently large. potentials of the mixture, we obtain

Finally, it should be noted that amphiphilic molecules
adsorbed at the air± water surface are also tilted if the F (r, T , {x} )

NkT
= ln r+ �

p

m=1surface density is moderate [12]. Fatty acid mono-
layers and similar chemical systems do not form a two-
dimensional nematic phase. But the nematic alignment Ö xmC ln xm Õ r Õ

1 P r

0
dr ¾ ln wm ( {x}, r ¾ )D .

of very long phospholipid tubules suspended on the
surface of an aqueous solution was recently observed (A1)
[13].

Here r=N /A is the surface density. The interfaceIn conclusion, using a geometrical approach we found
pressure de® ned bythat a quadrupolar order in two-dimensional systems

and smectic layers could be possible for suitably shaped
molecules. In particular, if rotation around the molecular P =

r
2

N

qF

qrlong axes is prevented and the particles are elongated
parallel to the tilt direction, the two-dimensional nematic is obtained from
phase is predicted to be stable in an intermediate density
region. For su� ciently high densities, however, the bP =r Õ P r

0
dr ¾ r ¾ �

p

m=1
xm

q ln wm ( {x}, r ¾ )

qr ¾
. (A2)

nematic order is replaced by the polar (SmC) order,
which allows a better packing of tilted particles.

For simplicity, we restrict our attention to the model
with four allowed orientations (§ 2). A generalization to
an in® nite number of orientations ( p � 2 ) could beFinancial support of the Sonderforschungsbereich 197
made straightforwardly.and the Fonds der Chemischen Industrie is gratefully

An exact evaluation of the probability wm is notacknowledged.
possible, but the s̀caled particle theory’ provides an
approximated method which leads to rather good results.

Appendix The probability that an arbitrarily chosen point of the
Scaled particle approach for a hard-rod ¯ uid plane with area A is not covered by any particle is equal

We consider a system of N di� erently oriented rod- to 1 Õ Nab /A . It is also possible to obtain the probability
like molecules grafted on an interface with area A and wm (l%1 ) that a very small probe ( s̀caled particle’) with
suppose that the molecules can be aligned towards p ® xed orientation and the dimensions la, lb and ll can
di� erent directions. The ratio xm=Nm /N is the fraction be added to the ¯ uid at an arbitrary point without
of particles oriented in the direction m (m =1, 2, ¼ , p) overlapping with other particles. If l%1, the probability
and thus the orientational distribution is de® ned by that the probe is in contact with more than one other
the set of numbers {x}={x1 , x2 , ¼ , xp}. Di� erently particle becomes negligibly small. Surrounding all N

oriented particles are regarded as distinguishable objects particles of the ¯ uid with the scaled particle, we obtain
similar to a mixture containing p components. An the excluded area into which this small particle cannot
arbitrarily chosen area of the surface can be either enter. The overall excluded area A

ex
m for a scaled particle

completely or partially covered by particles or is com- with orientation m (m =1, ¼ , 4 ) can be expressed as
pletely empty. Let wm denote the probability that at

A
ex
1 =N1a

((
+N2 a)+N3 a

(3
+N4 a),some arbitrary point of the two-dimensional system a

particle with orientation m (m =1, 2, ¼ , p) could be A
ex
2 =N1a)+N2a

((
+N3 a)+N4 a

(3added without overlapping any of the N hard particles.
A

ex
3 =N1a

(3
+N2 a)+N3 a

((
+N4 a) andThen the chemical potential for the component m of the

mixture of oriented particles can be expressed as [6] A
ex
4 =N1a)+N2a

(3
+N3 a)+N4 a

((
where the excluded areas per particle a

((
, a

(3
and a)bmm= ln (N/A ) Õ ln wm+Cm (T )

depend on the mutual orientation of the probe (scaled
particle) and the particle of ¯ uid. The orientation canwhere b= (kT ) Õ

1. The temperature-dependent term Cm (T )

has the same value for all components and is dropped be parallel, antiparallel or perpendicular, respectively.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
0
2
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



625Polar and quadrupolar order in Sm L C

A geometrical consideration shows that function J for a large area (l&1 ). Since wm (l)=1/J

(i=1, ¼ , 4 ) corresponds to the probability that an
a
((

= (a+la) (b +lb)
arbitrarily chosen area la Ö lb (which is assumed to be
an open thermodynamic system) does not contain anya

(3
= (b +lb +2lL ) (a +la)

particle [10], the relation
a)

= (a +lb) (la+b) +lL (l+1 ) (a +b) .

For the antiparallel orientation the excluded area a
(3 ln w i(l&1 ) =1/J =Õ

Pl
2
ab

kT
(A7)

is depicted in ® gure 5. Then the probability that a small
scaled particle with orientation m can be added to an

is satis® ed (P , surface pressure). Therefore we getarbitrary point of the surface without overlapping is

A d2 ln w i

dl
2 Bl=0

=Õ
2abP

kT
. (A8)

w1 (l%1 ) =1 Õ r(x1a
((

+x2 a)+x3a
(3

+x4a))

w2 (l%1 ) =1 Õ r(x1a)+x2 a
((

+x3a)+x4 a
(3

)

w3 (l%1 ) =1 Õ r(x1a
(3

+x2a)+x3 a
((

+x4a))

w4 (l%1 ) =1 Õ r(x1a)+x2 a
(3

+x3 a)+x4 a
((

) .

Using equations (A3± 8 ), the sum

�
4

i=1
x i ln w i (l=1 ) = ln ( 1 Õ rab) Õ

2rab

1 Õ rab
E ( {x}) Õ

Pab

kT(A3)

The starting point of the s̀caled particle theory’ is the (A9)
assumption that the probability wm can be approximately
obtained from the ® rst terms of a Taylor expansion: is evaluated, where

ln wm (l) = ln wm (l=0 ) +lC q ln wm

ql Dl=0
E ( {x}) =1 +2

L

b
(x1x3+x2 x4 ) + A a

b
+

b

a
Õ 2 +

L

a
+

L

b B
Ö (x1 x2+x2 x3+x3 x4+x4 x1 ) .+

l
2

2 C q2 ln wm

ql
2 Dl=0

+ ¼ (A4)

Deriving equation (A9) with respect to r leads to
Using the relations (A3), we get the ® rst coe� cients of
the expansion q

qr
�

4

i=1
x i ln w i (l=1 ) =Õ

ab

1 Õ rabln w i (l=0 ) = ln ( 1 Õ rab) , (A5)

Õ
2ab

(1 Õ rab)
2 E ( {x}) Õ

ab

kT

qP

qr
. (A10)A dw1

dl Bl=0
=Õ r{2x1ab +[a

2+b
2+L (a +b) ]x2

On the other hand, di� erentiating equation (A2) results+2 (ab +L a)x3+x4[a
2+b

2+L (a +b) ]}

in
(A6)

The corresponding derivative (dwm /dl)
l=0 for m =2, 1

kT

qP

qr
=1 Õ r

q
qr

�
4

i=1
x i ln w i (l=1 ) . (A11)

3 and 4 is obtained by renumbering the indices.
The second derivative (d2 ln wm /dl

2 )
l=0 is evaluated

Combining equations (A10) and (A11) yieldsheuristically, considering the grand canonical partition

1 Õ rab

kT

qP

qr
=1 +

rab

1 Õ rab
+

2rab

( 1 Õ rab)
2 E ( {x}).

(A12)

The surface pressure P , which can be measured for
amphiphilic molecules spread at an air± water surface
(Langmuir monolayer), results from integration of
equation (A12) taking into account P (r=0 ) =0. Thus
we get

Figure 5. The excluded area a(3
is obtained by moving the

s̀caled particle’ around an oppositely tilted particle of ab

kT
P =

y

( 1 Õ y)
2 {1 +[E ( {x} ) Õ 1 ]y} (A13)

the ¯ uid.
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